3.978 \(\int \frac{1}{\sqrt{-1+x^4}} \, dx\)

Optimal. Leaf size=54 \[ \frac{\sqrt{x^2-1} \sqrt{x^2+1} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{2} x}{\sqrt{x^2-1}}\right ),\frac{1}{2}\right )}{\sqrt{2} \sqrt{x^4-1}} \]

[Out]

(Sqrt[-1 + x^2]*Sqrt[1 + x^2]*EllipticF[ArcSin[(Sqrt[2]*x)/Sqrt[-1 + x^2]], 1/2])/(Sqrt[2]*Sqrt[-1 + x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0037157, antiderivative size = 54, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 9, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {222} \[ \frac{\sqrt{x^2-1} \sqrt{x^2+1} F\left (\sin ^{-1}\left (\frac{\sqrt{2} x}{\sqrt{x^2-1}}\right )|\frac{1}{2}\right )}{\sqrt{2} \sqrt{x^4-1}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[-1 + x^4],x]

[Out]

(Sqrt[-1 + x^2]*Sqrt[1 + x^2]*EllipticF[ArcSin[(Sqrt[2]*x)/Sqrt[-1 + x^2]], 1/2])/(Sqrt[2]*Sqrt[-1 + x^4])

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-(a*b), 2]}, Simp[(Sqrt[-a + q*x^2]*Sqrt[(a + q*x^2
)/q]*EllipticF[ArcSin[x/Sqrt[(a + q*x^2)/(2*q)]], 1/2])/(Sqrt[2]*Sqrt[-a]*Sqrt[a + b*x^4]), x] /; IntegerQ[q]]
 /; FreeQ[{a, b}, x] && LtQ[a, 0] && GtQ[b, 0]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{-1+x^4}} \, dx &=\frac{\sqrt{-1+x^2} \sqrt{1+x^2} F\left (\sin ^{-1}\left (\frac{\sqrt{2} x}{\sqrt{-1+x^2}}\right )|\frac{1}{2}\right )}{\sqrt{2} \sqrt{-1+x^4}}\\ \end{align*}

Mathematica [A]  time = 0.0117423, size = 25, normalized size = 0.46 \[ \frac{\sqrt{1-x^4} \text{EllipticF}\left (\sin ^{-1}(x),-1\right )}{\sqrt{x^4-1}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[-1 + x^4],x]

[Out]

(Sqrt[1 - x^4]*EllipticF[ArcSin[x], -1])/Sqrt[-1 + x^4]

________________________________________________________________________________________

Maple [C]  time = 0.004, size = 34, normalized size = 0.6 \begin{align*}{-i{\it EllipticF} \left ( ix,i \right ) \sqrt{{x}^{2}+1}\sqrt{-{x}^{2}+1}{\frac{1}{\sqrt{{x}^{4}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^4-1)^(1/2),x)

[Out]

-I*(x^2+1)^(1/2)*(-x^2+1)^(1/2)/(x^4-1)^(1/2)*EllipticF(I*x,I)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{x^{4} - 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^4-1)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(x^4 - 1), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{\sqrt{x^{4} - 1}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^4-1)^(1/2),x, algorithm="fricas")

[Out]

integral(1/sqrt(x^4 - 1), x)

________________________________________________________________________________________

Sympy [C]  time = 0.683862, size = 26, normalized size = 0.48 \begin{align*} - \frac{i x \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{1}{2} \\ \frac{5}{4} \end{matrix}\middle |{x^{4}} \right )}}{4 \Gamma \left (\frac{5}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x**4-1)**(1/2),x)

[Out]

-I*x*gamma(1/4)*hyper((1/4, 1/2), (5/4,), x**4)/(4*gamma(5/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{x^{4} - 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^4-1)^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(x^4 - 1), x)